


# PERFORMANCE (1.8 GHz)

- ♦ 36.5 dBm Output Power (P<sub>1dB</sub>)
- ♦ 10.5 dB Power Gain (G<sub>1dB</sub>)
- ♦ 49 dBm Output IP3
- ♦ 10V Operation
- ♦ 45% Power-Added Efficiency
- ♦ Evaluation Boards Available
- ♦ Additional Design Data Available on Website
- ♦ Usable Gain to 4GHz





The FPD4000AF is a packaged depletion mode AlGaAs/InGaAs pseudomorphic High Electron Mobility Transistor (pHEMT), optimized for power applications in L-Band. The high power flangemount package has been optimized for low electrical parasitics and optimal heatsinking.

Typical applications include drivers or output stages in PCS/Cellular base station transmitter amplifiers, as well as other power applications in WLL/WLAN amplifiers.

# ELECTRICAL SPECIFICATIONS AT 22°C

| Parameter                                                   | Symbol                 | <b>Test Conditions</b>                              | Min  | Тур  | Max  | Units |  |  |
|-------------------------------------------------------------|------------------------|-----------------------------------------------------|------|------|------|-------|--|--|
| RF SPECIFICATIONS MEASURED AT $f = 1.8$ GHz USING CW SIGNAL |                        |                                                     |      |      |      |       |  |  |
| Power at 1dB Gain Compression                               | $P_{1dB}$              | $V_{DS} = 10V; I_{DQ} = 720 \text{ mA}$             | 35.5 | 36.5 |      | dBm   |  |  |
|                                                             |                        | $\Gamma_S$ and $\Gamma_L$ tuned for Optimum IP3     |      |      |      |       |  |  |
| Power Gain at dB Gain Compression                           | $G_{1dB}$              | $V_{DS} = 10V; I_{DQ} = 720 \text{ mA}$             | 9.5  | 10.5 |      |       |  |  |
|                                                             |                        | $\Gamma_S$ and $\Gamma_L$ tuned for Optimum IP3     |      |      |      |       |  |  |
| Maximum Stable Gain                                         | MSG                    | $V_{DS} = 10 \text{ V}; I_{DQ} = 720 \text{ mA}$    |      | 19   |      | dB    |  |  |
| $S_{21}/S_{12}$                                             |                        | $P_{IN} = 0 dBm$ , $50\Omega$ system                |      |      |      |       |  |  |
| Power-Added Efficiency                                      | PAE                    | $V_{DS} = 10V; I_{DQ} = 720 \text{ mA}$             |      | 45   |      | %     |  |  |
| at 1dB Gain Compression                                     |                        | $\Gamma_S$ and $\Gamma_L$ tuned for Optimum IP3     |      |      |      |       |  |  |
| 3 <sup>rd</sup> -Order Intermodulation Distortion           | IP3                    | $V_{DS} = 10V; I_{DQ} = 720 \text{ mA}$             |      |      |      |       |  |  |
|                                                             |                        | $\Gamma_S$ and $\Gamma_L$ tuned for Optimum IP3     |      | -47  | -44  | dBc   |  |  |
|                                                             |                        | $P_{OUT} = 25.5 \text{ dBm (single-tone level)}$    |      |      |      |       |  |  |
| Saturated Drain-Source Current                              | I <sub>DSS</sub>       | $V_{DS} = 1.3 \text{ V}; V_{GS} = 0 \text{ V}$      | 1.9  | 2.3  | 2.65 | A     |  |  |
| Maximum Drain-Source Current                                | $I_{MAX}$              | $V_{DS} = 1.3 \text{ V}; V_{GS} \cong +1 \text{ V}$ |      | 3.6  |      | A     |  |  |
| Transconductance                                            | $G_{M}$                | $V_{DS} = 1.3 \text{ V}; V_{GS} = 0 \text{ V}$      |      | 2.4  |      | S     |  |  |
| Gate-Source Leakage Current                                 | $I_{GSO}$              | $V_{GS} = -3 \text{ V}$                             |      | 70   | 170  | μΑ    |  |  |
| Pinch-Off Voltage                                           | $ V_P $                | $V_{DS} = 1.3 \text{ V}; I_{DS} = 8 \text{ mA}$     | 0.7  | 0.9  | 1.4  | V     |  |  |
| Gate-Source Breakdown Voltage                               | $ V_{BDGS} $           | $I_{GS} = 8 \text{ mA}$                             | 6    | 8    |      | V     |  |  |
| Gate-Drain Breakdown Voltage                                | $ V_{BDGD} $           | $I_{GD} = 8 \text{ mA}$                             | 20   | 22   |      | V     |  |  |
| Thermal Resistivity (channel-to-case)                       | $\Theta_{\mathrm{CC}}$ | See Note on following page                          |      | 12   |      | °C/W  |  |  |



# RECOMMENDED OPERATING BIAS CONDITIONS

Drain-Source Voltage: From 5V to 10V

**Quiescent Current:** From 25%  $I_{DSS}$  to 55%  $I_{DSS}$ 

## ABSOLUTE MAXIMUM RATINGS1

| Parameter                                       | Symbol           | <b>Test Conditions</b>          | Min | Max       | Units |
|-------------------------------------------------|------------------|---------------------------------|-----|-----------|-------|
| Drain-Source Voltage                            | $V_{DS}$         | $-3V < V_{GS} < +0V$            |     | 12        | V     |
| Gate-Source Voltage                             | V <sub>GS</sub>  | $0V < V_{\rm DS} < +8V$         |     | -3        | V     |
| Drain-Source Current                            | $I_{DS}$         | For $V_{DS} > 2V$               |     | $I_{DSS}$ | mA    |
| Gate Current                                    | $I_G$            | Forward / Reverse current       |     | +25/-4    | mA    |
| RF Input Power <sup>2</sup>                     | P <sub>IN</sub>  | Under any acceptable bias state |     | 1.5       | W     |
| Channel Operating Temperature                   | T <sub>CH</sub>  | Under any acceptable bias state |     | 175       | °C    |
| Storage Temperature                             | T <sub>STG</sub> | Non-Operating Storage           | -40 | 150       | °C    |
| Total Power Dissipation                         | P <sub>TOT</sub> | See De-Rating Note below        |     | 12        | W     |
| Gain Compression                                | Comp.            | Under any bias conditions       |     | 5         | dB    |
| Simultaneous Combination of Limits <sup>3</sup> |                  | 2 or more Max. Limits           |     | 80        | %     |

 $<sup>{}^{1}</sup>T_{Ambient} = 22^{\circ}C$  unless otherwise noted <sup>2</sup>Max. RF Input Limit must be further limited if input VSWR > 2.5:1

### Notes:

Operating conditions that exceed the Absolute Maximum Ratings will result in permanent damage to the device.

Total Power Dissipation defined as:  $P_{TOT} = (P_{DC} + P_{IN}) - P_{OUT}$ , where:

P<sub>DC</sub>: DC Bias Power P<sub>IN</sub>: RF Input Power P<sub>OUT</sub>: RF Output Power

Total Power Dissipation to be de-rated as follows above 22°C:

 $P_{TOT} = 12 - (0.083 \text{W/}^{\circ}\text{C}) \times T_{PACK}$ 

where  $T_{PACK}$  = source tab lead temperature above 22 °C (coefficient of de-rating formula is the Thermal Conductivity)

Example: For a 55°C source lead temperature:  $P_{TOT} = 12 - (0.083 \times (55 - 22)) = 9.3W$ 

Note on Thermal Resistivity: The nominal value of 12°C/W is measured with the package mounted on a large heatsink with thermal compound to ensure adequate contact. The package temperature is referred to the Source flange.

#### HANDLING PRECAUTIONS

To avoid damage to the devices care should be exercised during handling. Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. These devices should be treated as Class 1A per ESD-STM5.1-1998, Human Body Model. Further information on ESD control measures can be found in MIL-STD-1686 and MIL-HDBK-263.

http://www.filcs.com Phone: +1 408 850-5790 Revised: 08/09/04 Email: sales@filcsi.com

Fax: +1 408 850-5766

<sup>&</sup>lt;sup>3</sup>Users should avoid exceeding 80% of 2 or more Limits simultaneously



## BIASING GUIDELINES

- Active bias circuits provide good performance stabilization over variations of operating temperature, but require a larger number of components compared to self-bias or dual-biased. Such circuits should include provisions to ensure that Gate bias is applied before Drain bias, otherwise the pHEMT may be induced to self-oscillate. Contact your Sales Representative for additional information.
- ➤ Dual-bias circuits are relatively simple to implement, but will require a regulated negative voltage supply for depletion-mode devices such as the FPD4000AF.
- Self-biased circuits employ an RF-bypassed Source resistor to provide the negative Gate-Source bias voltage, and such circuits provide some temperature stabilization for the device. A nominal value for circuit development is  $0.7~\Omega$  for the recommended 720mA operating point. This approach will require a DC Source resistor capable of at least 365mW dissipation.
- ➤ The recommended 720mA bias point is nominally a Class AB mode. A small amount of RF gain expansion prior to the onset of compression is normal for this operating point.

# PACKAGE OUTLINE

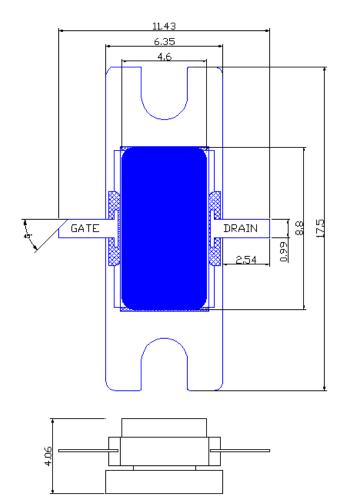
(dimensions in millimeters – mm)

# PACKAGE MARKING CODE

**Example:** 

*f*1ZD P2F

f = Filtronic


1ZD = Lot and Date Code

P2F = Status, Part Code, Part Type

**Status: D=Development P = Production** 

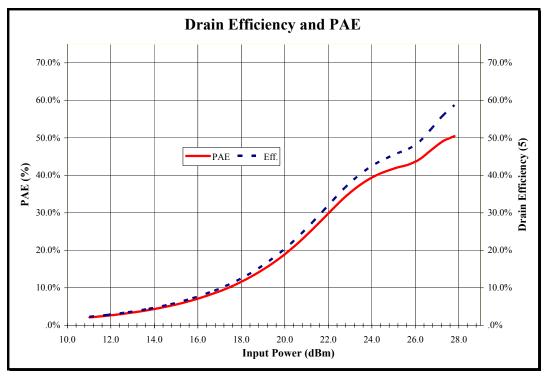
Part Code denotes model (e.g. FPD4000AF)

Part Type: F = FET (pHEMT)

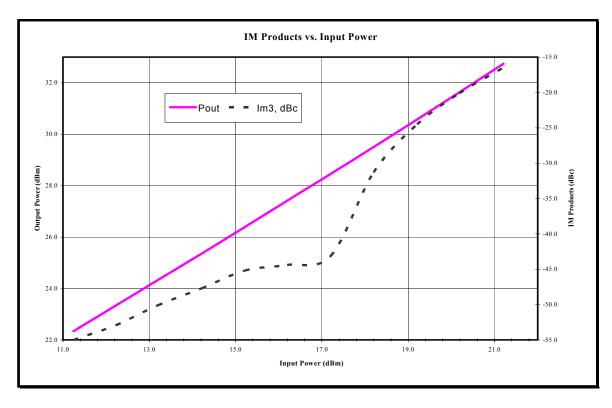


All information and specifications subject to change without notice.

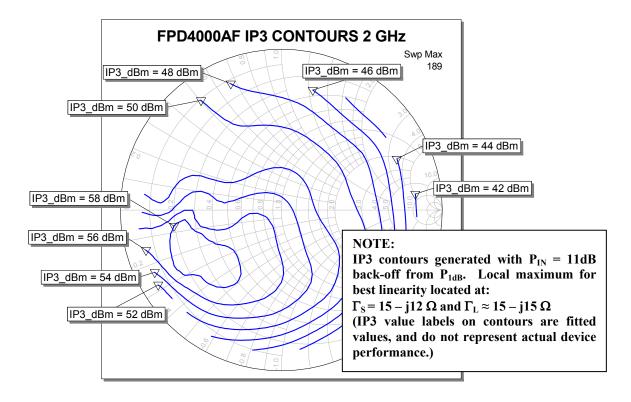
Phone: +1 408 850-5790 Fax: +1 408 850-5766 http://www.filcs.com


Revised: 08/09/04

Email: sales@filcsi.com




• TYPICAL RF PERFORMANCE ( $V_{DS} = 10V I_{DQ} = 720 \text{ mA}$  f = 2000 MHz):





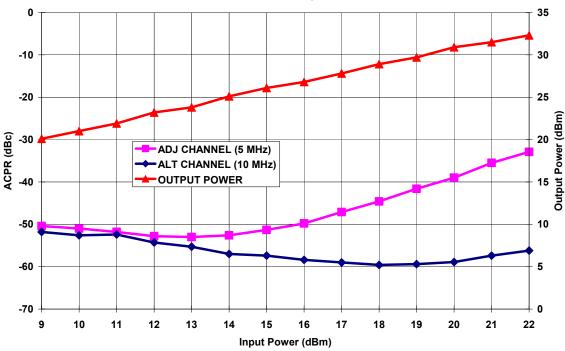




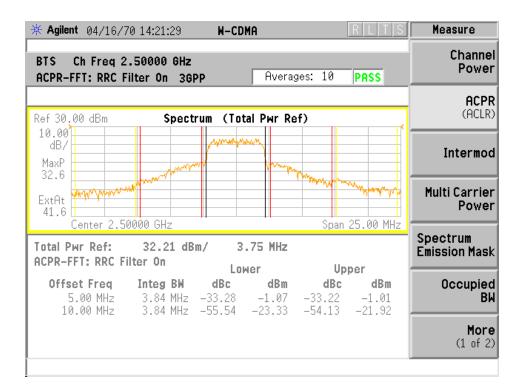

Note: Graph above shows Input and Output power as single carrier or single-tone levels.



http://www.filcs.com


Phone: +1 408 850-5790 http:// Fax: +1 408 850-5766

Email: sales@filcsi.com

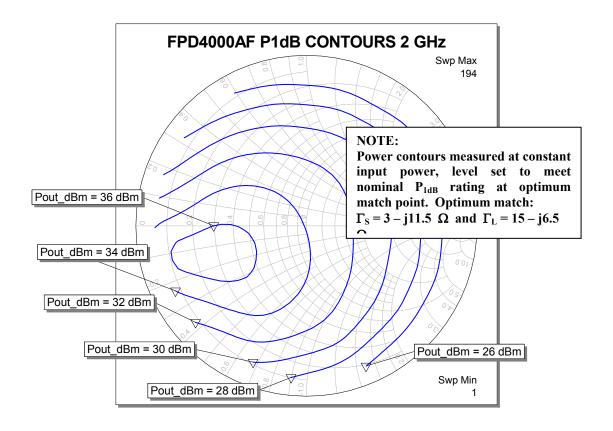

Revised: 08/09/04

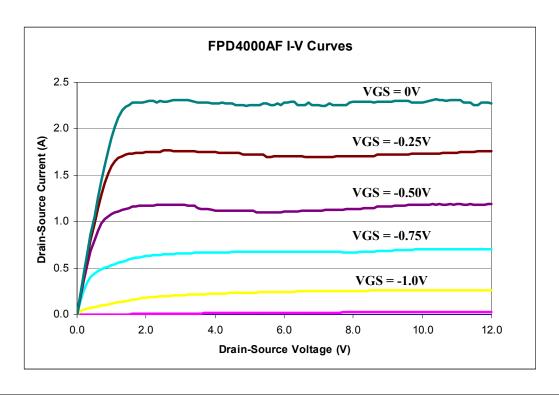






ACPR measurement at 4 dB back-off from P<sub>1dB</sub> with WCDMA BTS Forward modulation:





Phone: +1 408 850-5790 http://www.filcs.com

Fax: +1 408 850-5766

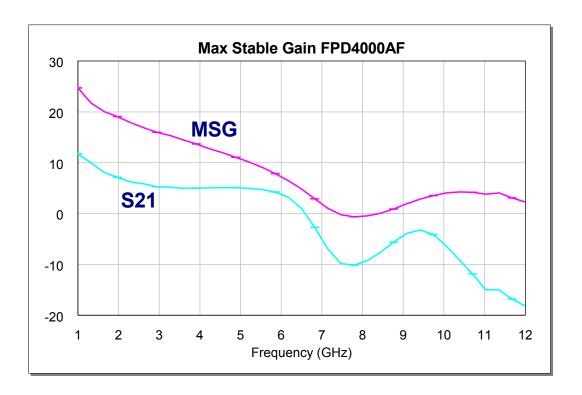
Revised: 08/09/04 Email: sales@filcsi.com







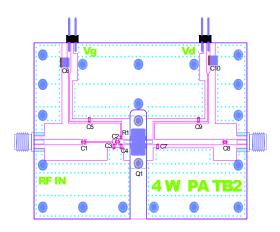
http://www.filcs.com


Phone: +1 408 850-5790 Fax: +1 408 850-5766

Email: sales@filcsi.com

Revised: 08/09/04




# RF PERFORMANCE OVER FREQUENCY:



Note: The FPD4000AF is suitable for applications up to 4 GHz.



STANDARD EVALUATION BOARD (1.70–1.85 GHZ):



**NOTE:** AutoCAD<sup>TM</sup> drawing available on Website

| Bill of Materials for Evaluation Board, FPD4000AF<br>EV-BL-000026-002-A |                    |                                                       |          |  |  |  |
|-------------------------------------------------------------------------|--------------------|-------------------------------------------------------|----------|--|--|--|
| Designator                                                              | Part Number        | Description                                           | Quantity |  |  |  |
| C1                                                                      | ATC600S0R9JW250    | Capacitor, 0.9 pF, 0603, ATC 600, tol. <u>+</u> 5%    | 1        |  |  |  |
| C2                                                                      | ATC600S3R0JW250    | Capacitor, 3.0 pF, 0603, ATC 600, tol. <u>+</u> 5%    | 1        |  |  |  |
| C3                                                                      | ATC600S1R8JW250    | Capacitor, 1.8 pF, 0603, ATC 600, tol. <u>+</u> 5%    | 1        |  |  |  |
| C4                                                                      | ATC600S1R0JW250    | Capacitor, 1.0 pF, 0603, ATC 600, tol. <u>+</u> 5%    | 1        |  |  |  |
| C5                                                                      | ATC600S330JW250    | Capacitor, 33 pF, 0603, ATC 600, tol. <u>+</u> 5%     | 1        |  |  |  |
| C6                                                                      | T491B105M035AS7015 | Capacitor, 1 μF, SMD-B, Kemet, tol. ±20%              | 1        |  |  |  |
| C7                                                                      | ATC600S1R5JW250    | Capacitor, 1.5 pF, 0603, ATC 600, tol. <u>+</u> 5%    | 1        |  |  |  |
| C8                                                                      | ATC600S330JW250    | Capacitor, 33 pF, 0603, ATC 600, tol. <u>+</u> 5%     | 1        |  |  |  |
| C9                                                                      | ATC600S330JW250    | Capacitor, 33 pF, 0603, ATC 600, tol. <u>+</u> 5%     | 1        |  |  |  |
| C10                                                                     | T491B105M035AS7015 | Capacitor, 1 μF, SMD-B, Kemet, tol. ±20%              | 1        |  |  |  |
| R1                                                                      | RCI-0603-10R1J     | Resistor, 100 $\Omega$ , 0603, IMS, tol. $\pm$ 5%     | 1        |  |  |  |
| Q1                                                                      | FPD4000AF          | Packaged Discrete pHEMT, Filtronic                    | 1        |  |  |  |
|                                                                         | PC-SP-000022-002   | PCB, FPD4000AF Eval Board, 2 GHz                      | 1        |  |  |  |
|                                                                         | 142-0711-841       | Connector, RF, SMA End Launch, Jack Assy, Johnson     | 2        |  |  |  |
|                                                                         | AMP-103185-2       | Connector, DC, 0.100 on center, 0.025 sq. posts, Tyco |          |  |  |  |
|                                                                         | TF-SP-000025       | Test Fixture Base, Flange Mount Package, 2 GHz        | 1        |  |  |  |
|                                                                         |                    | Screw, #2-56                                          | 20       |  |  |  |